Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 248
2.
New Phytol ; 241(4): 1829-1839, 2024 Feb.
Article En | MEDLINE | ID: mdl-38058220

The biosynthesis of specialized metabolites is strictly regulated by environmental inputs such as the day-night cycle, but the underlying mechanisms remain elusive. In Petunia hybrida cv. Mitchell flowers, the biosynthesis and emission of volatile compounds display a diurnal pattern with a peak in the evening to attract nocturnal pollinators. Using petunia flowers as a model system, we found that chromatin level regulation, especially histone acetylation, plays an essential role in mediating the day-night oscillation of the biosynthetic gene network of specialized metabolites. By performing time-course chromatin immunoprecipitation assays for histone modifications, we uncovered that a specific group of genes involved in the regulation, biosynthesis, and emission of floral volatile compounds, which displays the greatest magnitude in day-night oscillating gene expression, is associated with highly dynamic histone acetylation marks H3K9ac and H3K27ac. Specifically, the strongest oscillating genes featured a drastic removal of histone acetylation marks at night, potentially to shut down the biosynthesis of floral volatile compounds during the morning when they are not needed. Inhibiting daytime histone acetylation led to a compromised evening induction of these genes. Overall, our study suggested an active role of chromatin modification in the diurnal oscillation of specialized metabolic network.


Histones , Petunia , Histones/metabolism , Acetylation , Metabolic Networks and Pathways , Protein Processing, Post-Translational , Chromatin/metabolism , Flowers/physiology , Petunia/metabolism , Gene Expression Regulation, Plant
3.
Plant Cell ; 36(2): 324-345, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-37804091

Floral homeotic MADS-box transcription factors ensure the correct morphogenesis of floral organs, which are organized in different cell layers deriving from distinct meristematic layers. How cells from these distinct layers acquire their respective identities and coordinate their growth to ensure normal floral organ morphogenesis is unresolved. Here, we studied petunia (Petunia × hybrida) petals that form a limb and tube through congenital fusion. We identified petunia mutants (periclinal chimeras) expressing the B-class MADS-box gene DEFICIENS in the petal epidermis or in the petal mesophyll, called wico and star, respectively. Strikingly, wico flowers form a strongly reduced tube while their limbs are almost normal, while star flowers form a normal tube but greatly reduced and unpigmented limbs, showing that petunia petal morphogenesis is highly modular. These mutants highlight the layer-specific roles of PhDEF during petal development. We explored the link between PhDEF and petal pigmentation, a well-characterized limb epidermal trait. The anthocyanin biosynthesis pathway was strongly downregulated in star petals, including its major regulator ANTHOCYANIN2 (AN2). We established that PhDEF directly binds to the AN2 terminator in vitro and in vivo, suggesting that PhDEF might regulate AN2 expression and therefore petal epidermis pigmentation. Altogether, we show that cell layer-specific homeotic activity in petunia petals differently impacts tube and limb development, revealing the relative importance of the different cell layers in the modular architecture of petunia petals.


Petunia , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Petunia/genetics , Petunia/metabolism , Plant Proteins/metabolism , Gene Expression Regulation , Flowers/physiology , Morphogenesis/genetics , Gene Expression Regulation, Plant/genetics
4.
Plant Cell ; 36(1): 174-193, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-37818992

The epidermal cells of petunia (Petunia × hybrida) flowers are the main site of volatile emission. However, the mechanisms underlying the release of volatiles into the environment are still being explored. Here, using cell-layer-specific transcriptomic analysis, reverse genetics by virus-induced gene silencing and clustered regularly interspaced short palindromic repeat (CRISPR), and metabolomics, we identified EPIDERMIS VOLATILE EMISSION REGULATOR (EVER)-a petal adaxial epidermis-specific MYB activator that affects the emission of volatiles. To generate ever knockout lines, we developed a viral-based CRISPR/Cas9 system for efficient gene editing in plants. These knockout lines, together with transient-suppression assays, revealed EVER's involvement in the repression of low-vapor-pressure volatiles. Internal pools and annotated scent-related genes involved in volatile production and emission were not affected by EVER. RNA-Seq analyses of petals of ever knockout lines and EVER-overexpressing flowers revealed enrichment in wax-related biosynthesis genes. Liquid chromatography/gas chromatography-MS analyses of petal epicuticular waxes revealed substantial reductions in wax loads in ever petals, particularly of monomers of fatty acids and wax esters. These results implicate EVER in the emission of volatiles by fine-tuning the composition of petal epicuticular waxes. We reveal a petunia MYB regulator that interlinks epicuticular wax composition and volatile emission, thus unraveling a regulatory layer in the scent-emission machinery in petunia flowers.


Petunia , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Petunia/genetics , Petunia/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , Epidermal Cells/metabolism , Epidermis/metabolism , Waxes , Plant Proteins/genetics , Plant Proteins/metabolism
5.
BMC Plant Biol ; 23(1): 482, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37814235

BACKGROUND: Shoot branching of flowering plants exhibits phenotypic plasticity and variability. This plasticity is determined by the activity of axillary meristems, which in turn is influenced by endogenous and exogenous cues such as nutrients and light. In many species, not all buds on the main shoot develop into branches despite favorable growing conditions. In petunia, basal axillary buds (buds 1-3) typically do not grow out to form branches, while more apical axillary buds (buds 6 and 7) are competent to grow. RESULTS: The genetic regulation of buds was explored using transcriptome analyses of petunia axillary buds at different positions on the main stem. To suppress or promote bud outgrowth, we grew the plants in media with differing phosphate (P) levels. Using RNA-seq, we found many (> 5000) differentially expressed genes between bud 6 or 7, and bud 2. In addition, more genes were differentially expressed when we transferred the plants from low P to high P medium, compared with shifting from high P to low P medium. Buds 6 and 7 had increased transcript abundance of cytokinin and auxin-related genes, whereas the basal non-growing buds (bud 2 and to a lesser extent bud 3) had higher expression of strigolactone, abscisic acid, and dormancy-related genes, suggesting the outgrowth of these basal buds was actively suppressed. Consistent with this, the expression of ABA associated genes decreased significantly in apical buds after stimulating growth by switching the medium from low P to high P. Furthermore, comparisons between our data and transcriptome data from other species suggest that the suppression of outgrowth of bud 2 was correlated with a limited supply of carbon to these axillary buds. Candidate genes that might repress bud outgrowth were identified by co-expression analysis. CONCLUSIONS: Plants need to balance growth of axillary buds into branches to fit with available resources while allowing some buds to remain dormant to grow after the loss of plant parts or in response to a change in environmental conditions. Here we demonstrate that different buds on the same plant with different developmental potentials have quite different transcriptome profiles.


Petunia , Plant Growth Regulators , Plant Growth Regulators/metabolism , Petunia/genetics , Petunia/metabolism , Transcriptome , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Shoots
6.
Methods Mol Biol ; 2686: 39-58, 2023.
Article En | MEDLINE | ID: mdl-37540353

Flower development is the process leading from a reproductive meristem to a mature flower with fully developed floral organs. This multi-step process is complex and involves thousands of genes in intertwined regulatory pathways; navigating through the FLOR-ID website will give an impression of this complexity and of the astonishing amount of work that has been carried on the topic (Bouché et al., Nucleic Acids Res 44:D1167-D1171, 2016). Our understanding of flower development mostly comes from the model species Arabidopsis thaliana, but numerous other studies outside of Brassicaceae have helped apprehend the conservation of these mechanisms in a large evolutionary context (Moyroud and Glover, Curr Biol 27:R941-R951, 2017; Smyth, New Phytol 220:70-86, 2018; Soltis et al., Ann Bot 100:155-163, 2007). Integrating additional species and families to the research on this topic can only advance our understanding of flower development and its evolution.In this chapter, we review the contribution that the Solanaceae family has made to the comprehension of flower development. While many of the general features of flower development (i.e., the key molecular players involved in flower meristem identity, inflorescence architecture or floral organ development) are similar to Arabidopsis, our main objective in this chapter is to highlight the points of divergence and emphasize specificities of the Solanaceae. We will not discuss the large topics of flowering time regulation, inflorescence architecture and fruit development, and we will restrict ourselves to the mechanisms included in a time window after the floral transition and before the fertilization. Moreover, this review will not be exhaustive of the large amount of work carried on the topic, and the choices that we made to describe in large details some stories from the literature are based on the soundness of the functional work performed, and surely as well on our own preferences and expertise.First, we will give a brief overview of the Solanaceae family and some of its specificities. Then, our focus will be on the molecular mechanisms controlling floral organ identity, for which extended functional work in petunia led to substantial revisions to the famous ABC model. Finally, after reviewing some studies on floral organ initiation and growth, we will discuss floral organ maturation, using the examples of the inflated calyx of the Chinese lantern Physalis and petunia petal pigmentation.


Arabidopsis Proteins , Arabidopsis , Petunia , Solanaceae , Humans , Solanaceae/genetics , Solanaceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers , Arabidopsis Proteins/metabolism , Inflorescence , Arabidopsis/genetics , Petunia/metabolism , Vegetables , Gene Expression Regulation, Plant , Meristem/metabolism
7.
New Phytol ; 239(5): 2007-2025, 2023 09.
Article En | MEDLINE | ID: mdl-37394728

Members of the R2R3-MYB transcription factor subgroup 19 (SG19) have been extensively studied in multiple plant species using different silenced or mutated lines. Some studies have proposed a function in flower opening, others in floral organ development/maturation, or specialized metabolism production. While SG19 members are clearly key players during flower development and maturation, the resulting picture is complex, confusing our understanding in how SG19 genes function. To clarify the function of the SG19 transcription factors, we used a single system, Petunia axillaris, and targeted its two SG19 members (EOB1 and EOB2) by CRISPR-Cas9. Although EOB1 and EOB2 are highly similar, they display radically different mutant phenotypes. EOB1 has a specific role in scent emission while EOB2 has pleiotropic functions during flower development. The eob2 knockout mutants reveal that EOB2 is a repressor of flower bud senescence by inhibiting ethylene production. Moreover, partial loss-of-function mutants (transcriptional activation domain missing) show that EOB2 is also involved in both petal and pistil maturation through regulation of primary and secondary metabolism. Here, we provide new insights into the genetic regulation of flower maturation and senescence. It also emphasizes the function of EOB2 in the adaptation of plants to specific guilds of pollinators.


Petunia , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Flowers/physiology , Reproduction , Petunia/metabolism
8.
Proc Biol Sci ; 290(2002): 20230275, 2023 07 12.
Article En | MEDLINE | ID: mdl-37403504

The structure and function of biochemical and developmental pathways determine the range of accessible phenotypes, which are the substrate for evolutionary change. Accordingly, we expect that observed phenotypic variation across species is strongly influenced by pathway structure, with different phenotypes arising due to changes in activity along pathway branches. Here, we use flower colour as a model to investigate how the structure of pigment pathways shapes the evolution of phenotypic diversity. We focus on the phenotypically diverse Petunieae clade in the nightshade family, which contains ca 180 species of Petunia and related genera, as a model to understand how flavonoid pathway gene expression maps onto pigment production. We use multivariate comparative methods to estimate co-expression relationships between pathway enzymes and transcriptional regulators, and then assess how expression of these genes relates to the major axes of variation in floral pigmentation. Our results indicate that coordinated shifts in gene expression predict transitions in both total anthocyanin levels and pigment type, which, in turn, incur trade-offs with the production of UV-absorbing flavonol compounds. These findings demonstrate that the intrinsic structure of the flavonoid pathway and its regulatory architecture underlies the accessibility of pigment phenotypes and shapes evolutionary outcomes for floral pigment production.


Petunia , Petunia/genetics , Petunia/metabolism , Color , Flavonoids/metabolism , Pigmentation/genetics , Flowers/genetics , Gene Expression , Gene Expression Regulation, Plant
9.
Biomolecules ; 13(7)2023 06 23.
Article En | MEDLINE | ID: mdl-37509069

Research into molecular mechanisms of self-incompatibility (SI) in plants can be observed in representatives of various families, including Solanaceae. Earlier studies of the mechanisms of S-RNase-based SI in petunia (Petunia hybrida E. Vilm.) demonstrate that programmed cell death (PCD) is an SI factor. These studies suggest that the phytohormon cytokinin (CK) is putative activator of caspase-like proteases (CLPs). In this work, data confirming this hypothesis were obtained in two model objects-petunia and tomato (six Solanaceae representatives). The exogenous zeatin treatment of tomato and petunia stigmas before a compatible pollination activates CLPs in the pollen tubes in vivo, as shown via the intravital imaging of CLP activities. CK at any concentration slows down the germination and growth of petunia and tomato male gametophytes both in vitro and in vivo; shifts the pH of the cytoplasm (PHc) to the acid region, thereby creating the optimal conditions for CLP to function and inhibiting the F-actin formation and/or destructing the cytoskeleton in pollen tubes to point foci during SI-induced PCD; and accumulates in style tissues during SI response. The activity of the ISOPENTENYLTRANSFERASE 5 (IPT5) gene at this moment exceeds its activity in a cross-compatible pollination, and the levels of expression of the CKX1 and CKX2 genes (CK OXIDASE/DEHYDROGENASE) are significantly lower in self-incompatible pollination. All this suggests that CK plays a decisive role in the mechanism underlying SI-induced PCD.


Petunia , Solanaceae , Humans , Ribonucleases/genetics , Solanaceae/metabolism , Cytokinins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/metabolism , Endoribonucleases/metabolism , Petunia/genetics , Petunia/metabolism , Peptide Hydrolases/metabolism , Vegetables
10.
BMC Plant Biol ; 23(1): 210, 2023 Apr 22.
Article En | MEDLINE | ID: mdl-37085749

BACKGROUND: The floral volatile profile of Petunia x hybrida 'Mitchell diploid' (MD) is dominated by phenylpropanoids, many of which are derived from p-coumaric acid. However, the downstream processes involved in the production of caffeoyl-CoA and feruloyl-CoA from p-coumaric acid are complex, as the genes and biosynthesis steps are associated with flavonoids and lignin synthesis as well as floral volatiles benzenoid/phenylpropanoid (FVBP). Caffeoyl shikimate esterase (CSE) converts caffeoyl shikimate to caffeic acid and is considered one of the essential regulators in lignin production. Moreover, CSE in involved in phenylpropanoid production. To investigate the roles of CSE in FVBP biosynthesis, we used RNAi-mediated CSE down-regulated (ir-PhCSE) petunias. RESULTS: Lowered CSE transcript accumulation in ir-PhCSE plants resulted in reduced lignin layers in the stems and stunted growth, suggesting a positive correlation between lignin layers and lignin content. The altered CSE level influenced the expression of many FVBP genes, including elevated transcripts of p-coumarate-3-hydroxylase (C3H), hydroxycinnamoyl transferase (HCT), and 4-coumaric acid: CoA ligase (4CL). In particular, the expression of C4H in ir-PhCSE plants was more than twice the expression in MD plants. Moreover, the production of volatile compounds was alterend in ir-PhCSE plants. Most floral volatiles decreased, and the amounts of phenylalanine and caffeic acid were significantly lower. CONCLUSIONS: Reduced lignin layers in the stems and stunted growth in ir-PhCSE plants suggest that PhCSE is essential for lignin production and plant growth in petunia. The decreased CSE level influenced the expression of many FVBP genes, and interference of shikimate derivates altered volatile compound production. Significantly decreased caffeic acid, but not ferulic acid, in ir-PhCSE plants suggest that CSE is primarily involved in the reaction of caffeoyl shikimate. Higher C3H and C4H transcripts seem to alleviate accumulated p-coumaric acid resulting from altered CSE. Finally, alteration in C3H, HCT, and 4CL in CSE down-regulated plants suggests an interaction of the FVBP genes, leading to the regulation of floral volatiles of petunia.


Esterases , Petunia , Esterases/genetics , Lignin/metabolism , Petunia/genetics , Petunia/metabolism , Down-Regulation , Plant Proteins/genetics , Plant Proteins/metabolism , Mixed Function Oxygenases/genetics , Gene Expression Regulation, Plant
11.
Plant Physiol ; 192(1): 409-425, 2023 05 02.
Article En | MEDLINE | ID: mdl-36760164

Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.


Arabidopsis , Petunia , Petunia/genetics , Petunia/metabolism , Odorants , Phytochrome A/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers
12.
Plant Cell Rep ; 42(3): 609-627, 2023 Mar.
Article En | MEDLINE | ID: mdl-36690873

KEY MESSAGE: Ectopic expression of PhAN2 in vegetative tissue can improve regeneration and adventitious rooting but inhibit axillary bud outgrowth of petunia, while overexpression specifically in flowers could shorten longevity. Anthocyanin 2 has been only treated as a critical positive regulation factor of anthocyanin biosynthesis in petunia flowers. To determine if this gene had other functions in plant growth, we overexpressed this gene in an an2 mutant petunia cultivar driven by promoters with different strengths or tissue specificity. Various physiological processes of transformants in different growth stages and environments were analyzed. Besides the expected pigmentation improvement in different tissues, the results also showed that ectopic expression of AN2 could improve the regeneration skill but inhibit the axillary bud germination of in vitro plants. Moreover, the rooting ability of shoot tips of transformants was significantly improved, while some transgenic lines' flower longevity was shortened. Gene expression analysis showed that the transcripts level of AN2, partner genes anthocyanin 1 (AN1), anthocyanin 11 (AN11), and target gene dihydroflavonol 4-reductase (DFR) was altered in the different transgenic lines. In addition, ethylene biosynthesis-related genes 1-aminocyclopropane-1-carboxylic acid synthase (ACS1) and ACC oxidase (ACO1) were upregulated in rooting and flower senescence processes but at different time points. Overall, our data demonstrate that the critical role of this AN2 gene in plant growth physiology may extend beyond that of a single activator of anthocyanin biosynthesis.


Petunia , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Anthocyanins/metabolism , Petunia/genetics , Petunia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pigmentation/genetics , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
13.
Plant Cell ; 35(2): 673-699, 2023 02 20.
Article En | MEDLINE | ID: mdl-36478090

In Petunia (Solanaceae family), self-incompatibility (SI) is regulated by the polymorphic S-locus, which contains the pistil-specific S-RNase and multiple pollen-specific S-Locus F-box (SLF) genes. SLFs assemble into E3 ubiquitin ligase complexes known as Skp1-Cullin1-F-box complexes (SCFSLF). In pollen tubes, these complexes collectively mediate ubiquitination and degradation of all nonself S-RNases, but not self S-RNase, resulting in cross-compatible, but self-incompatible, pollination. Using Petunia inflata, we show that two pollen-expressed Cullin1 (CUL1) proteins, PiCUL1-P and PiCUL1-B, function redundantly in SI. This redundancy is lost in Petunia hybrida, not because of the inability of PhCUL1-B to interact with SSK1, but due to a reduction in the PhCUL1-B transcript level. This is possibly caused by the presence of a DNA transposon in the PhCUL1-B promoter region, which was inherited from Petunia axillaris, one of the parental species of Pe. hybrida. Phylogenetic and syntenic analyses of Cullin genes in various eudicots show that three Solanaceae-specific CUL1 genes share a common origin, with CUL1-P dedicated to S-RNase-related reproductive processes. However, CUL1-B is a dispersed duplicate of CUL1-P present only in Petunia, and not in the other species of the Solanaceae family examined. We suggest that the CUL1s involved (or potentially involved) in the SI response in eudicots share a common origin.


Petunia , Ribonucleases , Ribonucleases/genetics , Ribonucleases/metabolism , Phylogeny , Cullin Proteins/genetics , Cullin Proteins/metabolism , Pollination , Plant Proteins/genetics , Plant Proteins/metabolism , Petunia/metabolism
14.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article En | MEDLINE | ID: mdl-36555606

In plants, the shikimate pathway is responsible for the production of aromatic amino acids L-tryptophan, L-phenylalanine, and L-tyrosine. L-Phenylalanine is the upstream substrate of flavonoid and anthocyanin synthesis. Shikimate kinase (SK) catalyzes the phosphorylation of the C3 hydroxyl group of shikimate to produce 3-phosphate shikimate (S3P), the fifth step of the shikimate pathway. However, whether SK participates in flavonoid and anthocyanin synthesis is unknown. This study characterized the single-copy PhSK gene in the petunia (Petunia hybrida) genome. PhSK was localized in chloroplasts. PhSK showed a high transcription level in corollas, especially in the coloring stage of flower buds. Suppression of PhSK changed flower color and shape, reduced the content of anthocyanins, and changed the flavonoid metabolome profile in petunia. Surprisingly, PhSK silencing caused a reduction in the shikimate, a substrate of PhSK. Further qPCR analysis showed that PhSK silencing resulted in a reduction in the mRNA level of PhDHQ/SDH, which encodes the protein catalyzing the third and fourth steps of the shikimate pathway, showing a feedback regulation mechanism of gene expression in the shikimate pathway.


Anthocyanins , Petunia , Anthocyanins/metabolism , Petunia/genetics , Petunia/metabolism , Flowers/genetics , Flavonoids/metabolism , Phenylalanine/metabolism , Gene Expression Regulation, Plant
15.
Genes (Basel) ; 13(11)2022 11 08.
Article En | MEDLINE | ID: mdl-36360301

Petunia is one of the world's most important flowers, and its branch development has long been a source of discussion. MYB transcription factors have been identified as important plant branching regulators. In this study, 113 R2R3-MYB genes were identified from the petunia genome. PhMYB genes, closely related to RAXs, were expressed at greater levels in axillary buds and roots. Decapitation and 6-BA did not regulate the expression of PhMYB37. PhMYB37 was localized in the nucleus. Heterologous overexpression of PhMYB37 promoted shoot branching in transgenic Arabidopsis while silencing of PhMYB37 inhibited shoot branching. These results suggest that PhMYB37 plays a critical and positive role in petunia shoot branching.


Arabidopsis , Petunia , Petunia/genetics , Petunia/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Flowers
16.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article En | MEDLINE | ID: mdl-36012209

Deficiency or excess of iron (Fe) and improper medium pH will inhibit the growth and development of plants, reduce the transfer and utilization of energy from the root to the leaf, and affect the utilization efficiency of inorganic nutrients. The most common symptom of Fe deficiency in plants is chlorosis of the young leaves. In this study, the effects of the iron source, in combination with the medium pH, on plant growth and development, plant pigment synthesis, and nutrient uptake in a model plant Petunia hybrida cultured in vitro were investigated. Iron sulfate (FeSO4·7H2O) or iron chelated with ethylenediaminetetraacetic acid (Fe-EDTA) were supplemented to the MNS (a multipurpose nutrient solution) medium at a concentration of 2.78 mg·L-1 Fe, and the treatment without any Fe was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70 before autoclaving. The experiment was carried out in an environmentally controlled culture room with a temperature of 24 °C with 100 µmol·m-2·s-1 photosynthetic photon flux density (PPFD) supplied by white light emitting diodes (LEDs) during a photoperiod of 16 h a day, 18 °C for 8 h a day in the dark, and 70% relative humidity. Regardless of the Fe source including the control, the greatest number of leaves was observed at pH 4.70. However, the greatest lengths of the leaf and root were observed in the treatment with Fe-EDTA combined with pH 5.70. The contents of the chlorophyll, carotenoid, and anthocyanin decreased with increasing medium pH, and contents of these plant pigments were positively correlated with the leaf color. The highest soluble protein content and activities of APX and CAT were observed in the Fe-EDTA under pH 5.70. However, the GPX activity was the highest in the control under pH 4.70. In addition, the highest contents of ammonium (NH4+) and nitrate (NO3-) were measured in the FeSO4-4.7 and EDTA-5.7, respectively. More than that, the treatment of Fe-EDTA combined with pH 5.70 (EDTA-5.7) enhanced nutrient absorption, as proven by the highest tissue contents of P, K, Ca, Mg, Fe, and Mn. The genes' ferric reduction oxidase 1 and 8 (PhFRO1 and PhFRO8), iron-regulated transporter 1 (PhIRT1), nitrate transporter 2.5 (PhNRT2.5), and deoxyhypusine synthase (PhDHS) were expressed at the highest levels in this treatment as well. In the treatment of EDTA-5.7, the reduction and transport of chelated iron in P. hybrida leaves were enhanced, which also affected the transport of nitrate and catalyzed chlorophyll level in leaves. In conclusion, when the medium pH was adjusted to 5.70, supplementation of chelated Fe-EDTA was more conducive to promoting the growth and development of, and absorption of mineral nutrients by, the plant and the expression of related genes in the leaves.


Iron , Petunia , Chlorophyll/metabolism , Edetic Acid/metabolism , Edetic Acid/pharmacology , Hydrogen-Ion Concentration , Iron/metabolism , Nitrates/metabolism , Nutrients , Petunia/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism
17.
Plant Cell Rep ; 41(11): 2201-2211, 2022 Nov.
Article En | MEDLINE | ID: mdl-35988098

KEY MESSAGE: Overexpression of acdS in petunia negatively affects seed germination by suppression of ethylene biosynthesis and signaling genes and induction of abscisic acid biosynthesis genes in the seeds. The acdS gene, which encodes 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, has been overexpressed in horticultural crops to improve their tolerance to abiotic stress. However, the role of acdS in the germination of crop seeds has not been investigated, despite its suppression of ethylene production. In this study, acdS overexpression significantly reduced seed weight and germination rate in transgenic petunia cv. Merage Rose (T5, T7, and T12) relative to wild type via the suppression of ethylene biosynthesis and signaling genes and induction of abscisic acid (ABA) biosynthesis genes. The germination rate of T7 was significantly lower than those of T5 and T12, which was linked to higher expression of acdS in the former than the latter. The addition of exogenous ACC and gibberellic acid (GA3) to the germination medium improved the germination rate of T5 seeds and GA3 promoted the germination rate of T12 seeds. However, neither ACC nor GA3 promoted the germination rate of T7 seeds. The improved germination rates in T5 and T12 were associated with the transcriptional regulation of ethylene biosynthesis genes, particularly that of the ACO1 gene, signaling genes, and ABA biosynthesis genes. In this study, we discovered a negative role of acdS in seed germination in petunia. Thus, we highlight the need to consider the negative effect of acdS on seed germination when overexpressing the gene in horticultural crops to improve tolerance to abiotic stress.


Germination , Petunia , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Petunia/genetics , Petunia/metabolism , Seeds/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant/genetics
18.
J Exp Bot ; 73(18): 6434-6448, 2022 10 18.
Article En | MEDLINE | ID: mdl-35726094

The C2H2 zinc finger proteins (ZFPs) play essential roles in regulating cold stress responses. Similarly, raffinose accumulation contributes to freezing stress tolerance. However, the relationship between C2H2 functions and raffinose synthesis in cold tolerance remains uncertain. Here, we report the characterization of the cold-induced C2H2-type zinc finger protein PhZFP1 in Petunia hybrida. PhZFP1 was found to be predominantly localized in the nucleus. Overexpression of PhZFP1 conferred enhanced cold tolerance in transgenic petunia lines. In contrast, RNAi mediated suppression of PhZFP1 led to increased cold susceptibility. PhZFP1 regulated the expression of a range of abiotic stress responsive-genes including genes encoding proteins involved in reactive oxygen species (ROS) scavenging and raffinose metabolism. The accumulation of galactinol and raffinose, and the levels of PhGolS1-1 transcripts, were significantly increased in PhZFP1-overexpressing plants and decreased in PhZFP1-RNAi plants under cold stress. Moreover, the galactinol synthase (GolS)-encoding gene PhGolS1-1 was identified as a direct target of PhZFP1. Taken together, these results demonstrate that PhZFP1 functions in cold stress tolerance by modulation of galactinol synthesis via regulation of PhGolS1-1. This study also provides new insights into the mechanisms underlying C2H2 zinc finger protein-mediated cold stress tolerance, and has identified a candidate gene for improving cold stress tolerance.


Cold-Shock Response , Petunia , Cold-Shock Response/genetics , Raffinose/metabolism , Petunia/genetics , Petunia/metabolism , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Zinc Fingers
19.
Genes (Basel) ; 13(5)2022 05 11.
Article En | MEDLINE | ID: mdl-35627239

The WRKY transcription factors (TFs) participate in various physiological, growth and developmental processes of plants. In our study, a total of 79 WRKY family members were identified and classified into three groups (Group I, Group IIa-e, and Group III) based on phylogenetic and conservative domain analyses. Conserved motif analysis showed that seven WRKYGQK domains changed. The promoter sequence analysis suggested that there were multiple stress- and hormone-related cis-regulatory elements in the promoter regions of PhWRKY genes. Expression patterns of PhWRKYs based on RNA-seq data revealed their diverse expression profiles in five tissues and under different treatments. Subcellular localization analysis showed that PhWRKY71 was located in the nucleus. In addition, overexpression of PhWRKY71 caused a significant increase in branch number. This indicated that PhWRKY71 played a critical role in regulating the shoot branching of Petuniahybrida. The above results lay the foundation for further revealing the functions of PhWRKY genes.


Petunia , Gene Expression Regulation, Plant/genetics , Petunia/genetics , Petunia/metabolism , Phylogeny , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article En | MEDLINE | ID: mdl-35563382

Pollen tube growth depends on several complex processes, including exo/endocytosis, cell wall biogenesis, intracellular transport, and cell signaling. Our previous results provided evidence that calreticulin (CRT)-a prominent calcium (Ca2+)-buffering molecular chaperone in the endoplasmic reticulum (ER) lumen-is involved in pollen tube formation and function. We previously cloned and characterized the CRT gene belonging to the CRT1/2 subgroup from Petunia hybrida (PhCRT1/2), and found that post-transcriptional silencing of PhCRT1/2 expression strongly impaired pollen tube growth in vitro. Here, we report cloning of a new PhCRT3a homolog; we identified the full-length cDNA sequence and described its molecular characteristics and phylogenetic relationships to other plant CRT3 genes. Using an RNA interference (RNAi) strategy, we found that knockdown of PhCRT3a gene expression caused numerous defects in the morphology and ultrastructure of cultivated pollen tubes, including disorganization of the actin cytoskeleton and loss of cytoplasmic zonation. Elongation of siPhCRT3a pollen tubes was disrupted, and some of them ruptured. Our present data provide the first evidence that PhCRT3a expression is required for normal pollen tube growth. Thus, we discuss relationships between diverse CRT isoforms in several interdependent processes driving the apical growth of the pollen tube, including actomyosin-dependent cytoplasmic streaming, organelle positioning, vesicle trafficking, and cell wall biogenesis.


Petunia , Actins/metabolism , Endoplasmic Reticulum/metabolism , Petunia/genetics , Petunia/metabolism , Phylogeny , Pollen Tube , RNA Interference
...